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Some effects of surface tension on steep water waves.
Part 2
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This paper continues an investigation of the effects of surface tension on steep water
waves in deep water begun in Hogan (1979a). A Stokes-type expansion method is
given which can be applied to most wavelengths. For capillary waves (2cm or less)
it is found that the surface of the highest wave encloses a bubble of air, as was found
for pure capillary waves by Crapper (1957). For intermediate waves (20 cm) the wave
profiles are similar to those of pure gravity waves and the wave properties increase
monotonically. For gravity waves (200 cm) the wave properties all exhibit a maximum
just short of the maximum wave height obtained by the method. The integral pro-
perties for all the waves are drawn and given in numerical form in the appendix.

1. Introduction

In a recent paper (Hogan 1979 a, hereinafter referred to as I) some results of work on
pure capillary waves were presented. Exact expressions were obtained for the wave
energy and flux of momentum, energy and mass of the wave in terms of the wave
amplitude. It was also proved that the potential energy is always greater than the
kinetic energy. In addition it was found that the crest height of such waves, when
referred to the mean level, is not a monotonic function of wave height.

In the present paper, using methods pioneered by Stokes (1880), and developed by
Schwartz (1974) and Longuet-Higgins (1975), we consider waves with both gravity
and surface tension taken into account. No exact solutions were found but, using a
computer to perform the algebra, very accurate results can be obtained. We find that
for short wavelengths the wave is very capillary-like in nature. The highest wave
bends over and touches itself, enclosing a bubble of air. The crest height above the
mean level is not a monotonic function of wave height and the potential energy
exceeds the kinetic energy. In addition the gravitational potential energy is greatest
at a height short of the maximum. For intermediate waves where surface tension is
not quite so important, the wave properties are monotonic in the wave amplitude. We
find that the wave trough broadens and the wave crest narrows as the amplitude
increases, the phase speed and other integral properties increase and the total kinetic
energy exceeds the total potential energy. However, for gravity waves the present
method reveals the existence of a wave of greatest energy at a height less than the
maximum obtained by this method. In fact all the properties of these gravity waves
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are not monotonic functions of wave height. The case of waves in which the present
method breaks down, the so-called Wilton ripples, is to be included in a further paper.
In § 2, we set up the problem and derive the governing equations. In § 3 the perturba-
tion solution is given. In §4 we quote the results and § 5 is devoted to a discussion of
their consequences.

2. The governing equations for gravity—capillary waves

We develop a method for analysing symmetric two-dimensional periodic gravity—
capillary waves on the surface of an ideal fluid of infinite depth. We have at our
disposal two limiting cases against which our results can be checked. Pure gravity
waves have been analysed by Schwartz (1972, 1974), Longuet-Higgins (1975) and
Cokelet (1977), pure capillary waves by Crapper (1957) and I. However it was Wilton
(1915) who presented the first significant results for the general problem and it is
with this paper that most comparison will be made. With a suitable choice of reference
frame, the waves can be brought to rest with the fluid at great depths moving to the
left with the phase speed ¢c. We choose axes with y vertically upwards, and x horizontal
and to the right. We assume irrotationality of the flow and an inviscid incompressible
fluid. In addition, as in I, we take the mean level as the line y = 0 and the mean
horizontal velocity as zero.

Following Stokes (1880) we consider the velocity potential ® and stream function
¥ (both relative to the moving reference frame) as independent variables. In fact the
notation is the same as in I, with in addition the wavelength A normalized to 27 and
the acceleration due to gravity to 1, although we will change this later on.

Let

O4+i¥ =—iclnW (2.1)
80
W = exp (i®/c) on the free surface y =17 (where¥ = 0),
W—>0 as y—>-—oo (where¥ ~ —cy).
In general
x+iy=i(an+ > %anW"), (2.2)
n=0

where the a,, (n = 0,1,2,...) are all real. a, does not have the same value as in I but
serves the same purpose, that is of fixing the origin of y. The particle velocity (U, v)
is given by
U—iv = dé?;:’iq;) S —
4 ( 1+ ¥ a, W")

n=1

At the free surface y = 9, Bernoulli’s condition can be written as
27"

~ T~ K, (2.3)

]Us—ivs]2+ 2(n~ay)

where the subscript s denotes surface values, 7 is the surface tension divided by the
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density, the prime denotes d/dz and K is a constant. If we put ¥ = 0 in (2.2) and
equate real and imaginary parts we obtain

@ i q)
z=— d)/c——n‘:‘,l%‘sm ("T) = f(®/c), (2.4a)
@ )
7 = a0+n§1%" cos (Ec—) = g(®/c), (2.40)

where, from now on, everything is considered to be evaluated at the surface.
The curvature can then be rewritten as

" fi—df
(L+72F 7 (f24 g2yt (2:5)

where the dot denotes d/d(®/c). Then making use of the identity

2 2 1
To+7e = m,
we see that
A @ 2
@y +7p) = f2+g%= |1+ X a, W"| . (2.6)
n=1

Equations (2.5) and (2.6) enable us to write equation (2.3) in the following form:

.2

- 2r(ﬁ7—g'f‘)/| 1+ 3 o,

¢ +[2( — a) — K1 [

a
1+ ¥ a, Wn
n=1

We then substitute equations (2.4a, b) into equation (2.7) and equate coefficients of
cos (n®/c). However, this is rather complicated to do all at once so we break down the
calculation into smaller pieces.

Write
® k®
fo-df = % avoos (), (2.80)
k=0 c
‘1+ § a, Wr| =— % Uy, CO8 (ch), (2.85)
n=1 k=0 c
__#_g-ﬁ_ =— % W), CO8 (@), (2.8¢)
‘1+ S a, Wr|  *O °
n=1
© 2 © k(I)
+2n—ag)— K| |1+ X a, W™ ]= 8, c08 | ~— . (2.8d)
n=1 k=0

We have chosen the negative sign in equation (2.8b), following Wilton, that is, we
take the radius of curvature to be positive in the wave troughs.
From equation (2.7) we must then solve

Sy =—2kw,, n=0,1,2... (2.9)

k is a non-dimensional number arising naturally in the problem; in general it is given
14-2
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by « = 4n%r/A%. The 8, (n = 0,1, 2, ...) can be expressed in terms of ¢?, K, ay, ay, ... as
follows:

sp=ctr2 3 Wwhe_ge (2.10a)
k=1 k
® a
B0 = 3 i tfu)=Kf n= 1,20, (2.100)
where
@©
fo=1+ 3 ai, (2.11q)
k=1
fa=0+ X @05, n=12 .. (2.11d)
k=1

We note that if 7 = 0 then equation (2.9) implies that s, = 0 (n = 0,1, 2,...). In this
case equations (2.10a, b) are exactly equations (2.6a,b) of Schwartz (1974), evaluated
at infinite depth.

3. The perturbation solution

Following Schwartz we let ¢ be a global parameter associated with the wave height
which vanishes with the wave height. Then we assume power series expansions in
terms of e of each of the ay, f;, ¢;, 8;, u;, w;, c*and K. Thus

a; = P ajk6i+2k’ j::.- 1,2,..., (3.1a)
f.1= kzoﬂjk6i+2k’ j=031:'--, (31b)
9= ; /“jkeﬂ-zk’ .7 =0,1,.., (3.1¢)
'gj = kgoo-jkeﬂ_zk) j = O, 1’ sery (3.1d)
= X Tt =01 (3.1¢)
wy = kzoéjkef“", i=0,1,.., (3.1f)
= % Ve, (3.19)
k=0
K=Y §,¢%, (3.1A)
k=0

We then substitute equations (3.1) into equations (2.8), (2.9), (2.10) and (2.11) and
equate coefficients of €. The following recurrence relations are then obtained:

k-1 1 r k
Oor = Y+ 23 7 > ak—r,r—fmﬁk—r,m— > é\k—p ﬂOp’ k=0,1,...; (3.2a)
r=0 k r 0 p=0

m=
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1 & k-1
Yoy = Z 7, 2 AP st Z l+ 2 %5, k—t—s Dis
I=1'g=0 Js=
-1 1 1 .
+ 2 ) 2 s Prirta— E 0Bk J=1,2,... and k=0,1,..;
1=0 8=0 1=0
(3.2d)
k k-l
ﬂoo =1, ﬂ E anlr“l,k—l—ﬂ k= 1,2,..; (3-20)
k k-1 .
ﬂfk = ajk 2 2 l,.aH_j,k_,_,., ‘7 = 1, 2, er and k = O, 1, ooy (3.2d)
k 1 k k=l ' ‘
Bor = I§OTOITO —t3 21 Z_OTtm"'t,k—l—m’ k=0,1,..; (3.2€)
k k k1
B = 1§0 leTo,k—l+"' E E "'zm"'1+t,k—z—m
11 1 k
+1 Y X TikmTjtm J=12,... and k=0,1,...; (3.2f)
l=1m=0
k_
Poo =0, pox = ; (k=1 E ak—-l,l—mak—l,m’ k=1,2,..; (3.29)
k—m
M = Jop+ Z (§+2m) 2 ampaﬁm,k_m_p, ji=12,... and k=0,1,...;
(3.2h)
k k=1 )
Hox = E CaTo, k—l+ ; E §zm"'z, kt-ms K =0,1,..; (3.25)
Hik = E (§jl"'o, —z+§ot7'1,k—z)+— E E Q,k—m"'f—lm
1" 1 .
21% "EO CestmTireamt SaramTet-m) J=1,2,... and k=0,1,..;
(3.2k)

In the above expressions the summation is taken to be identically zero if the lower
limit exceeds the upper. Equations (3.2a, b) were derived from equations (2.10a,bd),
(3.2¢,d) from (2.11a,b), (3.2¢,f) by combining (2.8b) and (2.4a,b) in (2.6), (3.2g, k)
from (2.8b), (3.24,k) from (2.8¢) and (3.21) from (2.9). This system of equations (3.2)
is closed only when we define the parameter e.

(a) Verification and extension of Wilton’s work

To verify Wilton’s work we simply let ¢ = a,. From equation (3.1a) we see that this is
equivalent to taking '

=1, a,=0 k=1,2,..
We then substitute this into equations (3.2) and solve. The following results, up to
O(a?) are then obtained:

ay = ay;
(k—2) , (30k3—T71k24 17k —8)

2= k)T T 8ek—1)P (3k—1) a1 +0(a}); (3.3a)
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_ 9(2k®—11k+8) ,
%= Teek—D) (B —1) 1
3(13248K5 — 53640k + 63260k — 20010k + 7971k — 1216)

- 768(2x — 18 (3k — 1) (dx— 1) ai+0(@a]); (3.3b)

(18«3 — 183«2+ 361k — 128)

% = T3 D) Be = 1) = 1) a} + 0(al); (3.3¢)
oy = 2250 :;:&f + ll)szsggx_a I{‘Iilsff? . 11(1_0*1’)“— O0r0a); (330
PSS

Nliass 1_2?;(1535 ;L): (7311521_) 2T g+ 0(at); (3-3¢)
2= 1+x— (28%:{——{)—8) a3

| (40— 1641t~ 56660 + 18212 — 1392+ 448) 4 0 o) (3.3/)

128(2k — 1)® (3x— 1)

Equations (3.3a—f) agree with Wilton’s equations (10)-(15) respectively, with due
regard paid to changes in notation. We note the presence of singularities at

k=1%1% ..,

equivalent to wavelengths of 2-44, 2-99 cm for water. This phenomenon is due to the
primary wave undergoing a resonant interaction with one of its harmonics. The case
k = } will be considered in greater detail in a later paper.

In theory we can carry on and find more coeffticients (with the aid of a computer).
However Schwartz showed for pure gravity waves that the coefficient a, is not a
monotonically increasing function of the wave height. Instead he uses ¢ = h where &,
the wave amplitude, is defined as

b = 1(erest — Mirousn)-
Using (2.4b), this can be written as

h = % Qog—1
k=1 (2k—1)°
or, using equation (3.1a), as
h= 3 Ayttt (3.4)
k=1
where
A= % Suiod 19 (3.5)
k = (2j—1) 3 >~y 3
80
Ay=1, A, =0, £=2,3,..., (3.6)

in order that ¢ = h. We then use this form of ¢, in case @, is not monotonic in 4 for all
values of k. Also h is a more practical parameter to use and the trouble of calculating
the amplitude in terms of a,, at each step of the working, is removed.
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In order to obtain the solution to high order, we programmed equations (3.2)
together with the closure equations (3.6) in FORTRAN Iv on Cambridge University’s
IBM 370/165 computer. The execution time for a quadruple precision (32 decimal
places) solution up to O(h1%) was approximately 10 minutes and was independent of
the input value of « (which must be chosen initially). More coefficients are difficult
to obtain owing to storage problems associated with quadruple precision arithmetic.
A double precision (16 decimal places) run produced more coefficients but serious
rounding error was evident in the higher-order terms. This choice, of fewer (more
accurate) coefficients, turns out to be vindicated because the expansions (3-1) converge
rapidly for particular values of x. Consequently the higher-order terms are not as
essential as may at first seem the case.

Runs were made with « = 0, 0-000075, 0-0075, 0-8, 1-0, 5:0, 10-0. Other runs, with
values of « nearer to 0-5, were also made but the analysis of these is to be included in a
subsequent paper. The case x = 0-000075 (a wavelength in water of approximately
200 cm) is not strictly suitable for inclusion as the effects of the air above could well
have as comparable effect on the wave form as does surface tension. However it is
instructive to compare it with the cases x = 0 and 0-0075.

In addition the following results were obtained, for general «, by hand:

3(2k2— 11k + 8)

Y= b G nEe—n " T O (3.7a)

e ) B0 5401040, o
g = £§§Z2__11,1(§:f)1) 13+ O(S); (3.7¢)
S 11 :gk__lff(";:_:;f)l(’;;i? R+ O(hS); (3.7d)
ay = e e e o= 8 b0y (370
K=1+k- ———-—(2"28(“2}<5fj)16) iz

(7245 — 428,;; ;( ;:(i;<:)—3(132’(952 ;; 454K = 64) e 51)
2= 14+«k— (—2;(%-_’_—(_%@ 2

(7215 — 428k — 19443 + T35«2% — T4k + 64) he+ O(hS). (3.79)

128(2c— 1) (3x — 1)

The computed results for a particular value of « agree exactly with those of equations
(8.7), up to the orders given. In addition equations (3.7) can be shown to agree with
Schwartz (1974) when « = 0 and Crapper (1957) when « is infinite.
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(b) Integral properties

We can now draw wave profiles, using the a, (»n = 1,2,...) and equations (2.4a,b).
However we can do more with the computed coefficients. In particular we can calculate
phase speeds, kinetic and potential energies and mass, energy and momentum fluxes.
For example the phase speed is given by equation (3.1g) and we calculate the required
coefficients y,, from equation (3.2a). To find the potential energy V, either we choose
a, 80 that the mean level 7 vanishes or we can let a, = 0 and use equation (3.12a),
below. We choose the latter. Other properties are found as follows. From equation
(2.7) of I we have that

T=£fww+mm=yw. (3.8)

In addition, letting y - — oo in equation (2.3) of the present paper gives us

7= H(K—cd). (3.9)
Hence

T = }c¥( K —c?) (3.10)
and

I = }c(K —c?) (3.11)

where, in (3.11), we have used the well-known result 27" = ¢I (see Longuet-Higgins
(1975) for a proof in the case of pure gravity waves which can easily be extended to
include gravity—capillary waves). With a non-zero mean level the potential energy V
is given by

V = 3P -7+ (1 + 72— 1] (3.12a)

=V,+V, (3.12b)

(compare this with equation (2.3) of I). We can now greatly simplify V, as follows:

1 2me
=%, (x5 +73)dD

2m ©
=L c(z u,, CO8 (?)) ao

2mc)o  \n=o

1 o 2me n(I)
=g 2,0 ], C°S(T)‘”’]

= U,

Note we have taken the positive root of (1 +7'2)} so as to be consistent with 7. Then
using (3.1¢) and the fact that 7,y = 1 [from (3.2¢) with k£ = 0 and (3.2¢)] we have

V= k 3 1o h%, (3.13)
k=1
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V, is given in terms of a;; by Cokelet (1977), equations (5.23) and (5.24). This enables us
to write

12957k laj-k—tkaj—-k—uhz,

V, =
T 4,25 5 T (G-k-D)
1 % ]ZIJ % 15— mzk 1j—-m—k—i— 1(1 2 )
+= + —
8jc2m=1 k=0  i=0 n=0 m j—k—i—mn

aj—m—k—’l,—‘n £ %mi aj—-k—z—‘n,‘n hei
(j—m—k—i—n)

_1 § lj_l(‘ k- laz—k—mkaz-—k—n n)
8522 li=1 \k=0 n=0 (t—k—mn)

J=i1i-icl-1 &4 t—m, 1 Xf—i—d—m, m)}
X naa L S LU B 3.14
(l§0 o (j—i—l-m) (314

Similarly using (3.1¢) and (3.1%) we have

(Or—71) Vi B, (3.15)

IIMa-

152

PPI»—

For the radiation stress S,, and energy flux F we use equations (2.23) and (2.24) of

I viz.
8., =4T-3V,-V, (3.16)

= (3T —2V,)c. (3.17)

Crapper (1979) has given an expression for §,,, the excess flux of z momentum in the
z direction (where the z axis is such as to form a right-handed triad with the present
(x,y) axes, that is, it is directed at right angles into the page). It is

S,=T-V-V. (3.18)
The following expressions were then obtained:

(—6x2+ 1243 — 21K2+15K)
16(2«—1)2(3xk—1)

(— 12x% 4 4443 — 39x24- 21k + 8)
64(2k — 1)2(3x—1)

(— 84K+ 1723 — 193k2% + 175k — 24)
64(2x—1)2(3x—1)

ke + O(R8); (3.22)

T = }(1+«) k2 + +O0(8); (3.19)

V = }1+x) A2+ R4+ O(hS); (3.20)

S, = }(1+3x) 2+ MORs);  (3.21)

S = —(2x%+k+8)
=7 64(2c—1)

(— 18k%+42x3— 37k% + 34— 4)

16(2k— 1) (3x — 1) ki + O(kS). (3.23)

F/c=}1+3k)h*+

Equations (3.19) and (3.20) agree with deep-water linear theory, as do (3.21), (3.22)
[see Longuet-Higgins & Stewart (1964), § 3, equations (6) and (23), respectively] and
(3.23) [see Wehausen & Laitone (1960), equation (15.25)]. These results also agree with
the known results for the limiting cases x = 0 and « infinite. Three other features of
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these equations are noted also. Firstly, the singularities at x = 4, 4, ... are still present.
Secondly, I'—V (= 8,,) is positive if x < }, and negative if x > } and we shall see
that V > T' is characteristic of all capillary waves with x > } (we already know this
when « is infinite, see I, figure 2). Finally the order A% term in 7' vanishes at x = 0 and
at k = 1, the other two roots being complex.

To conclude this section we note that when the expansion parameter was chosen
to be the same as the one used by Cokelet (1977), namely

2 2
_ Qerest Jirough

2 . 2
e2=¢e=1
¢ ct

where Gorests Qirougn denote the particle speeds at the wave crest and wave trough
respectively, several of the coefficients a,;, 8;;, ete. are (for all A) complex-valued for
k > 4. Of course this parameter is not necessarily applicable here. Its main merit, for
pure gravity waves, is that it has a known range, viz. 0 < ¢, < 1. This is because
Qerest Was postulated, by Stokes, to have the value zero at the highest wave (in a
reference frame moving with the wave crests). However on including surface tension,
a sharp crest must be ruled out, on intuitive grounds at least. It can also be
ruled out by using methods similar to those in §4 of Schwartz (1974) to show that
qerest Can never vanish. So, even if the a;; ete. were not complex-valued we still would
not know the range of ¢, a prior:.

4. Results

Now we present wave profiles and integral properties of waves for various values of
k. It is to be noted that taking r = 0 (in the dimensional form of «) is equivalent to
taking A infinite. In that sense, pure gravity waves will be included in the section on
gravity waves together with « = 0-000075 and « = 0-0075. In the same sense pure
capillary waves (g = 0) will be included under capillary waves, along with x = 0-8, 1-0,
5:0 and 10-0. The main results are plotted in figures 1-21 and tabulated (where appro-
priate) in the appendix. All the graphs were drawn with [13/13] Padé approximants
and the tables contain these values, except for values of & near the highest, where the
converged results are used. The values given are correct to the number of figures shown.

(@) Gravity waves

Work on pure gravity waves was verified. In particular tables 1 and 2 of Schwartz
(1974), table 2 of Longuet-Higgins (1975), figures 19 and 20 and table A0 of Cokelet
(1977) were all reproduced. Minor differences were encountered at heights very near
to the maximum, owing to the fewer number of terms being used.

In the cases k = 0-:000075 and « = 0-0075 we have now to consider what we shall
call the highest wave. We have already excluded as a possibility the case of a sharp
corner in the profile and, for these gravity waves, a criterion based on an enclosed
bubble of air is obviously inapplicable. Another possible criterion, namely that the
horizontal particle velocity (in the frame moving with the waves) should vanish
somewhere in the profile implies that some part of the wave profile must be vertical
and we shall see that this cannot be attained by our method. In our case we adopt the
following criterion. Having solved (3.2) with (3.6) for the c,;, we can then calculate
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Fiaurg 1. Wave profiles, in the case ¥ = 0-000075, for & = 0-05, 0-10, 0-15, 0-20, 0-25,
0-30, 0-35, 0-39, 0-41, 0-43. The still water line is included for reference.

a; from (3.1a), with the aid of Padé approximants. Then if we do not get convergence
in the Padé approximants, we cannot draw the wave profile by using equations (2.4).
It must be stressed that this limiting criterion is only technical; the author has not
yet seen any physical significance in this choice. This method is also dependent on
what we call convergent. However it seems obvious, for consistency, to choose that
used by Cokelet. That is, for a given value of ¢, take, for each value of ,

{{¥/Nla;—[N—1/N—1]a}
C= W .

Then let N = 1,2,... until either C < 10~% or we run out of coefficients «;; to approxi-
mate. If the former, we take [N/N]a, as our value for a; and go on to consider a;,,;
if the latter, we take a,_, as the largest usable coefficient.

In applying this limiting criterion with the convergence condition, it was found
that not all the a, diverged after a certain height was passed. Groups of a, persisted
in converging as k increased, with others diverging. So the maximum height A,,,, was
taken as the highest value of » at which the first 60 Fourier coefficients converged. For
K = 0:000075, hp,, = 0-4365 and for k = 0-0075, h,, = 0-3545 by this method. So for
h = hpax+0-0001, one or more of thea, (¢ = 1,2, ..., 60) diverged.

Whether or not these are highest waves remains to be seen. However work in progress
on values of the radius of curvature at points along the wave profile indicate that as &
increases towards h.,,, the radius of curvature appears to approach a constant
value dependent only on «. More numerical accuracy is required to support this
conclusion, but it now seems that the values of A, ,, quoted here do have some
relevance.

Finally, in the case of the gravity waves considered here, it is possible that for
k = 0:0075 the Fourier coefficient a,3; can be unusually large (the same applies to



428 S. J. Hogan
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F16URE 2. Wave profiles, in the case x = 0-00758, for k = 0-05, 0-10, 0-15, 0-20,
0-25, 0-30, 0-3545. The still water line is included for reference.

k = 0000075 and a,;34,) oWing to the denominator containing small terms (133« — 1 and
133 33k — 1 respectively). However it can be shown (for k = 0:0075) that a4, ; = 107,
not too distant from the expected value of 107, (It is not possible, with present com-
puter facilities, to find a,j335 1 for « = 0-000075.) This is very close to the largest
number that the computer can hold and is hence subject to serious rounding error. So
the author tried out two other values of k which would provide manageable coefficients,
and give trouble at ag,. In each case (x = 199/16000 and 399/32000), the results for
truncation at a,, and a,,, were indistinguishable to 8 decimal places at hp,yx (= 0-30)
in each case. Hence it seems that exclusion of these near-singular coefficients has no
noticeable effect on our results.

In figure 1 we show wave profiles in the case xk = 0-000075. Note (i) we do not
draw the highest wave as the series in equations (2.4) do not converge well, as is the
case for k = 0 and h = h,, = 0-44313, (ii) the profile » = 0-43 is almost entirely
within the profile A = 0-41, the former having a trough depth less than the latter and
(iii) the profile & = 0-43 has extra steepening just short of the crest, with a maximum
local slope of 32-6°. In figure 2 with « = 0-0075 we have been able to draw the highest
wave. The crest height and trough depth increase monotonically with % and the
maximum wave slope is 20-6°. We note that no part of the wave profiles in either figure
is vertical.

We now describe the behaviour of various integral properties of waves with
k = 0-:000075 and 0-0075 and compare them with pure gravity wave (x = 0). First we
consider the phase speed c. In figure 3 we have drawn (c?—c)/c2 against h/hy,y. ¢,
is the phase speed of a wave of zero amplitude, given by c2 = 1 + k. We note the presence
of a maximum in each of the curves for x = 0 (as found by Longuet-Higgins 1975)
and x = 0-000075. Also the maximum value attained by (c?—c2)/c2 for k = 0 is larger
than the maximum for « = 0-000075, but the value at h = A,y for « = 0 is lower than
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Fraure 3. The relative increase in the squared phase speed ¢? to that of infinitesimal wavos cj,
plotted against h/h,,, for k = 0, 0-000075, 0-0075.

F1cuRE 4. The kinetic energy T plotted against h/h,, for k = 0, 0-000075, 0-0075. The scaling
is such that g = 1.

the corresponding value for k = 0-000075. In addition there is one point at which the
curve for k¥ = 0 intersects with the curve for « = 0-000075.

In fact this sort of behaviour of these values of « is typical of most of the wave
properties. In figures 4 and 5 we plot the kinetic and potential energies of these waves
against h/h ... From the tables we see that 7' is always greater than V. In figure 6
we plot V, against h/h ... The behaviour here is not typical but it is interesting to see
how little of the potential energy is actually due to the stretching of the surface. In
the case ¥ = 0, V, is identically zero. In figures 7 and 8 we plot S, the excess flux of z
momentum in the x direction, and S,,, the excess flux of z momentum in the z direc-
tion, respectively, against A/h,,. In figure 8 there is a maximum of §,, in the case
k = 0-000075 although this may not be obvious from the graph. Also, in figures 9 and 10
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Fioure 5. The potential energy V plotted against &/hg,, for k = 0,
0-000075, 0-:0075. The scaling is such that g = 1.

we plot the fluxes of mass I and energy F, again, versus 7/hy,x. The mean level 7 and
Bernoulli constant exhibit similar behaviour and are not shown. 7and V were checked,
as in Cokelet (1977), by integration along the wave profile from their definitions. The
intermediate maxima were confirmed and the deviation at most 29, (this occurred
at b = hpgy).

Finally since the integral properties give us a hint as to its behaviour, we plotted
a, against h/hy.y. For k = 0 we know the behaviour is non-monotonic (Schwartz
1972) and now it coines as no surprise to find the same behaviour when « = 0-000075,
see figure 11, In fact a, to a,; (for « = 0-000075) are non-monotonic in % (not
shown). Note though that a, is monotonic in A when « = 0-0075 and this is reflected
in the behaviour of its integral properties. Discussion of these results is delayed
until § 5.
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F1cure 6. That part of the potential energy due to surface tension V, plotted against
h/hg,x for k = 0, 0-:000075, 0-0075. The scaling is such that g = 1.

(b) Capillary waves

These waves are much easier to analyse and the convergence of all quantities in this
section is remarkable. This is partly to be expected when one remembers the exact
solution to the problem in the case x = o0 as given by Crapper (1957). However our
method cannot deal with this case owing to the finite amount of computer storage
available. But using Crapper’s results and the results given in §3 of I, we are able
to compare large values of x with the case x = c0. To do this requires a change in the
scaling. Instead of g = 1, we take 7 = 1 so that (non-dimensional) x = 1/g. Then the
case g = 0 does correspond to the case x = 0.

Again we must answer the question: what is the highest wave? However this time
the answer is much simpler. We have Crapper’s criterion available, that is, the surface
bends over and touches itself, enclosing a bubble of air. In fact we found this behaviour
for « = 0-8, 1-0, 5-0 and 10-0 and we obtained maximum heights by a simple technique,
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Ficure 7. The radiation stress S,, plotted against A/Ah_,  for x = 0, 0-000075, 0-0075. The
scaling is such that g = 1.

Figure 8. The radiation stress, S,,, plotted against h/h_,, for &« = 0, 0-000075, 0-0075. The
scaling is such that g = 1.

based on the method of interval halving, used in finding roots of polynomials. This
implies that wave profiles could be drawn for & > h,, but these profiles, of a very
non-physical shape, can also be obtained from Crapper’s solution. The values of A,
for various values of « are given in table 1, where A = 2.

We have also drawn the highest wave profiles together (figure 12). The case x = 0-8
is missing as it is very similar to the case k = 1-0. We note the dependence of trough
depth and crest height on « and the ever-present bubble. In the case x = 1-0, we have
drawn profiles with % less than k., as well as the highest; these are given in figure 13.
Similar graphs can be drawn for x = 0-8, 5-0 and 10-0. Note that, as found in I for the
case kK = 00, the crest height above the mean level is not a monotonic function of wave
amplitude.
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F16ure 9. The wave momentum I plotted against k/h,,. for « = 0, 0:000075, 0-0075. The

scaling is such that g = 1.
F1aurEe 10. The energy flux F plotted against h/h,,. for « = 0, 0000075, 0-0075. The scaling
is such that g = 1.

max

The results for integral properties follow. In figure 14 we plot c2/c2 against k. Note
that c2/c} is a decreasing function of 4 for all values of « and that the values of ¢?/c}
at b = A,y decrease as « decreases. In figure 15 we plot T' against A/h,,. The curves
for k = 1-0 and 0-8 possess maxima just short of h = A_,,. In figure 16 we plot V
against A/h ... Here the behaviour is monotonic with &, but this covers up the rather
interesting behaviour of V, as given in figure 17. In each case of finite « there is a well-
defined maximum far short of A = h_,,. Thus ¥, must rapidly increase beyond this
maximum and this is the case as the surface starts to bend to enclose a bubble of air.
We note that V, for x = 1-0 appears greater for most of the range of s /A, than ¥, for
k = 0-8. However the x = 0-8 curve represents a greater percentage of ¥, in ¥ than
the ¥ = 1-0, 5:0 and 10-0 curves for all values of h/h_,,. As found in I for x = co, we
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Ficure 11. The leading Fourier coefficient of the wave profile, a,
plotted against k/h, . for k = 0, 0-000075, 0-0075.

K h,

0 0-4431
0-000075 0-4365
0-007 5 0-3545
0-8 0-7243
1-0 0-806 9
50 1-484 6
10-0 1-7468
o] 2-292 6

TaBLE 1. Highest waves for various values of «.
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Ficurk 15. The kinetic energy T plotted against h/h_,, for x = 0-8, 1-0, 5-0, 10-0, co. The scaling
is such that 7 = 1.

Figure 16. The potential energy V plotted against h/h,,, for x = 0-8, 1-0, 5:0, 10-0, co. The
scaling is such that 7 = 1.

find here that V is always greater than 7T for given values of % and «. In figure 18 we
plot S, against h/h,,; non-monotonicity is absent. In figure 19 we plot S,, against
b/ homax- It will be noted that S,, is always negative for non-zero k, indicating the flow of
z momentum in the z direction for short waves is in the opposite direction to the case
of long waves. In figure 20 and 21 we plot the fluxes of mass I and energy F. In the
latter figure the curves x = 1-0 and 0-8 are non-monotonic. We note that the mean
level and Bernoulli constant are monotonic in ». They are not shown. However table 2
contains values of 7;eet aNd 741oygn for various values of « and .

Finally we state that a, is also a monotonic function of 4 for the quoted values of «.
Hence we could have used it as an expansion parameter. In fact the whole analysis
was repeated in this manner for the case x = 1-0 and six-figure accuracy retained
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Ficure 17. That part of the potential energy due to gravity V, plotted against & /h_,, for x = 0-8,
1-0, 5-0, 10-0, co. The scaling is such that 7 = 1.

Ficure 18. The radiation stress S,, plotted against h/hg,, for « = 0-8, 1-0, 5:0, 10-0, 0. The
scaling is such that 7 = 1.

throughout, thus giving a check on the method. However when the mean level and
potential energies were checked by the method of Cokelet (1977), severe disagreement
was found in the case of the higher waves, for all values of «. This was owing to the
presence, in these waves, of two vertical tangents which the computer fails to
represent accurately when integrating along the profile. Thus using a, as an expansion
parameter was necessary if 7 and V were to be checked. The worst agreement was
0-001 %,
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Ficure 19. The radiation stress S,, plotted against h/h,,, for « = 0-8, 1-0, 5-0, 10-0, co. The

mMax
scaling is such that 7 = 1.

Figure 20. The wave momentum I plotted against k/h,,, for « = 0-8, 1-0, 5-0, 10-0, co. The
scaling is such that 7 = 1.

5. Discussion

We have shown that gravity waves have non-monotonic integral properties even
when there is a small amount of surface tension present. However, as we move to
shorter waves, where surface tension dominates, the waves look and behave very
much like pure capillary waves.

This work has implications for experimenters who seek non-monotonicity in
gravity waves. For it now seems that they must deal with waves of substantial wave-
lengths if any progress is to be made. The author feels that if a wave of length less
than 200 cm is looked at, the non-monotonic behaviour will be very hard to detect,
as the maximum moves nearer to the line A = h,4,. However, experimental work on
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F1oUre 21. The energy flux F plotted against h/h.,, for x = 0-8,
1-0, 5-0, 10-0, co. The scaling is such thut 7 = 1.

capillary waves could produce the characteristic pure-capillary wave form because it
now appears that waves of length 2 cm will have this form also. In practice viscosity
will dampen the waves but not as fast as would be the case for waves of even shorter
lengths.

In the case k = 0:000075 it should be possible to find instabilities in the manner of
Longuet-Higgins (1978a,b). There, for pure gravity waves, evidence (both physical
and numerical) was given as to the possibility of the maximum in the phase speed being
responsible for the onset of an instability (it may also be instructive to apply the same
methods to the case « = 0-0075 where no phase speed maximum is present). The work
of Longuet-Higgins & Fox (1977, 1978) may also be adapted to see if the phase speed
possesses any other extrema but there the difficulty will arise in defining accurately
the highest wave. In addition this work can be extended to water of arbitrary uniform
depth. Few wave profiles have been drawn by other authors for x not equal to zero
or infinity. Only Wilton’s work is relevant and his profiles haye been compared to
Crapper’s (see Wehausen & Laitone, 1960, p. 749). But as we pointed out at the end
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of § 4, because @, is monotonic in %, it is possible to extend Wilton’s analysis to higher
waves with the aid of Padé approximants.

Finally, we point out that an approach to the problem, based on 3 = F(x) where F
contains sines, cosines and their integral powers, will almost surely fail because as, we
have shown, 7 is not always a single valued function of x.

In a subsequent paper the case of waves near to and at x = } will be analysed in
detail. Consideration of the question of parasitic capillary waves is also delayed,
possibly for inclusion in work where the full time-dependence of the problem is analysed.

While the final draft of this paper was being written, the author received preprints
of papers by L. W. Schwartz & J.-M. Vanden-Broeck and B. Chen & P. G. Saffman.
Both pairs of authors concentrate on the shorter waves, with the latter pair showing
that bifurcations of the solution can exist. However neither paper gives details of
integral properties, other than phase speeds.

Full details of the algorithm used to solve equations (3.2) are contained in the
author’s Ph.D. thesis (Hogan 19795).

I would like to thank Professor M. S. Longuet-Higgins for suggesting this problem
to me and the Natural Environment Research Council for financial support.
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