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Some effects of surface tension on steep water waves. 
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This paper continues an investigation of the effects of surface tension on steep water 
waves in deep water begun in Hogan (1979a). A Stokes-type expansion method is 
given which can be applied to most wavelengths. For capillary waves (2cm or less) 
it is found that the surface of the highest wave encloses a bubbIe of air, as was found 
for pure capillary waves by Crapper (1957). For intermediate waves (20cm) the wave 
profiles are similar to those of pure gravity waves and the wave properties increase 
monotonically. For gravity waves (200 cm) the wave properties all exhibit a maximum 
just short of the maximum wave height obtained by the method. The integral pro- 
perties for all the waves are drawn and given in numerical form in the appendix. 

1. Introduction 
In  a recent paper (Hogan 1979 a, hereinafter referred to as I) some results of work on 

pure capillary waves were presented. Exact expressions were obtained for the wave 
energy and flux of momentum, energy and mass of the wave in terms of the wave 
amplitude. It was also proved that the potential energy is always greater than the 
kinetic energy. In  addition it was found that the crest height of such waves, when 
referred to the mean level, is not a monotonic function of wave height. 

In  the present paper, using methods pioneered by Stokes (1880), and developed by 
Schwartz (1974) and Longuet-Higgins (1975), we consider waves with both gravity 
and surface tension taken into account. No exact solutions were found but, using a 
computer to perform the algebra, very accurate results can be obtained. We find that 
for short wavelengths the wave is very capillary-like in nature. The highest wave 
bends over and touches itself, enclosing a bubble of air. The crest height above the 
mean level is not a monotonic function of wave height and the potential energy 
exceeds the kinetic energy. In  addition the gravitational potential energy is greatest 
at a height short of the maximum. For intermediate waves where surface tension is 
not quite so important, the wave properties are monotonic in the wave amplitude. We 
find that the wave trough broadens and the wave crest narrows as the amplitude 
increases, the phase speed and other integral properties increase and the total kinetic 
energy exceeds the total potential energy. However, for gravity waves the present 
method reveals the existence of a wave of greatest energy a t  a height less than the 
maximum obtained by this method. In fact all the properties of these gravity waves 
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are not monotonic functions of wave height. The case of waves in which the present 
method breaks down, the so-called Wilton ripples, is to be included in a further paper. 
In 8 2, we set up the problem and derive the governing equations. In  5 3 the perturba- 
tion solution is given. In  4 4 we quote the results and $ 5  is devoted to a discussion of 
their consequences. 

2. The governing equations for gravity-capillary waves 
We develop a method for analysing symmetric two-dimensional periodic gravity- 

capillary waves on the surface of an ideal fluid of infinite depth. We have at  our 
disposal two limiting cases against which our results can be checked. Pure gravity 
waves have been analysed by Schwartz (1972, 1974), Longuet-Higgins (1975) and 
Cokelet (1977), pure capillary waves by Crapper (1957) and I. However it was Wilton 
(1915) who presented the first significant results for the general problem and it is 
with this paper that most comparison will be made. With a suitable choice of reference 
frame, the waves can be brought to rest with the fluid a t  great depths moving to the 
left with the phase speed c. We choose axes with y vertically upwards, and x horizontal 
and to the right. We assume irrotationality of the flow and an inviscid incompressible 
fluid. In  addition, as in I ,  we take the mean level as the line y = 0 and the mean 
horizontal velocity as zero. 

Following Stokes (1880) we consider the velocity potential @ and stream function 
Y (both relative to the moving reference frame) as independent variables. In fact the 
notation is the same as in I, with in addition the wavelength h normalized to 27r and 
the acceleration due to gravity to 1, although we will change this later on. 

Let 
@+iY = -icln W (2.1) 

so 
W = exp (i@/c) on the free surface y = r] (whereY = 0) ,  

W+O as y+-m (whereY N -cy). 
In general 

x + i y = i  InW+ C -anWn , ( ,=on " l  ) 
where the a, (n = 0 , 1 , 2 , .  . .) are all real. a. does not have the same value as in I but 
serves the same purpose, that is of fixing the origin of y. The particle velocity ( U ,  v)  
is given by 

-C - - d(@ +iY) 
u-iv = 

n = l  

At the free surface y = r ] ,  Bernoulli's condition can be written as 

where the subscript s denotes surface values, 7 is the surface tension divided by the 
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density, the prime denotes d / d x  and K is a constant. If we put Y = 0 in (2 .2)  and 
equate real and imaginary parts we obtain 

where, from now on, everything is considered to be evaluated at  the surface. 
The curvature can then be rewritten as 

where the dot denotes d /d (Q, / c ) .  Then making use of the identity 

1 
4+7k = m’ 

we see that 
m 

( 2 . 4 ~ )  

(2.4b) 

(2 .5 )  

(2 .6 )  

Equations (2 .5 )  and (2 .6 )  enable us to write equation (2 .3 )  in the following form: 

c 2 + [ 2 ( 7 - a o ) - K ] [ 1 1 +  5 anwn12] = 2 7 ( f q - g f )  m anwnl. (2.7) 

n= 1 

We then substitute equations (2 .4a ,  b )  into equation (2 .7 )  and equate coefficients of 
cos (nQ,/c). However, this is rather complicated to do all a t  once so we break down the 
calculation into smaller pieces. 

Write 

(2 .8b)  

(2 .8d )  

We have chosen the negative sign in equation (2 .8b ) ,  following Wilton, that is, we 
take the radius of curvature to be positive in the wave troughs. 

From equation (2 .7)  we must then solve 

sn = - ~ K W , ,  n = 0 , 1 , 2  ,... . (2.9) 

K is a non-dimensional number arising naturally in the problem; in general it  is given 
14-2 
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by K = 4wzT/h2g. The s, (n = 0,1 ,2 ,  . . .) can be expressed in terms of c2, K ,  a,, a,, . . . as 
follows: 

( 2 . 1 0 ~ )  

(2.10b) 

where 
W 

(2.1 1 a)  2 
fo = 1 + c a k ,  

k= 1 

W 

f, = a,+ 2 akak+,, n = I , % . .  . . 
k= 1 

(2.11b) 

We note that if 7 = 0 then equation (2.9) implies that s, = 0 (n = 0, 1,2, ...). In this 
case equations (2.10a, b) are exactly equations (2.6a, b )  of Schwartz (1974), evaluated 
at infinite depth. 

3. The perturbation solution 
Following Schwartz we let E be a global parameter associated with the wave height 

which vanishes with the wave height. Then we assume power series expansions in 
terms of E of each of the a,, f,, qj ,  s,, uj, wj, c2 and K .  Thus 

W 

a .  3 = 2 a j k d + 2 k ,  j = 1,2, ..., ( 3 . 1 ~ )  
k=O 

W 

f, = c Pjkd+*, j = O , l ,  ... , 
k- 0 

(3.lb) 

(3.ld) 

(3.1e) 

(3.1h) 

We then substitute equations (3.1) into equations (2.8), (2.9), (2.10) and (2.11) and 
equate coefficients of 8. The following recurrence relations are then obtained: 
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k i k k-1 

k I k k-1 

(3.2h) 

k 1 i - 1  k 

1=0 1=1 m=O 

+2 X 1=0 m=O 

p i k  = x (Cjl k-I + COI r j ,  k-l)  -k 2 2 x 6, k - m  rj-l,m 

I k - 1  1 x ( ~ k - l , l - r f + k J , m + ~ i + k - l , n a r k - l , l - ) ,  j = i ? 2 , * . -  and k = 0, 1, 

(3.2k) 
u j k  = - 2KCjk. (3.21) 

In  the above expressions the summation is taken to be identically zero if the lower 
limit exceeds the upper. Equations (3.2a, b )  were derived from equations (2.10a, b) ,  
(3.2c,d) from (2.11a,b),  (3 .2e , f )  by combining (2.8b) and (2.4a,b) in (2.6), (3.2g,h) 
from (2 .8b ) ,  (3.2j ,  k )  from ( 2 . 8 ~ )  and (3.21) from (2.9). This system of equations (3.2) 
is closed only when we define the parameter 6 .  

(a) Verijication and extension of Wilton's work 

To verify Wilton's work we simply let 6 = a,. From equation (3.1 a) we see that this is 
equivalent to taking 

We then substitute this into equations (3.2) and solve. The following results, up to 
O(4) are then obtained: 

Ctlo=l, a l k = O ,  k = l , 2  ,.... 

a, = a,; 

(K-2)  ( 3 0 ~ ~ - 7 1 ~ ~ + 1 7 ~ - 8 )  4 + o w ;  a'- 8 ( 2 ~ -  l y ( 3 ~ -  1) 
a2 = ~ 

(2K- 1) 
( 3 . 3 4  
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9 ( 2 ~ ~ - 1 1 ~ + 8 )  
a, = 4 16(2K - 1) (3K - 1) 

3 ( 1 3 2 4 8 ~ ~ - 5 3 6 4 0 ~ ~ + 6 3 2 6 0 ~ ~ -  2 9 0 1 0 ~ ~ + 7 9 7 1 ~ -  1216) 
- aZ+O(a:); (3.3b) 

7 6 8 ( 2 ~  - 1)3 (3K - 1)2 ( 4 ~  - 1) 

(18K3- 1 8 3 ~ ' + 3 6 1 ~ -  128) 
12(2K - 1) (3K - 1) (4K - 1) 

a4 = . a': + O(a9; (3.3c) 

(3 .34 
2 5 ( 2 8 8 ~ ~  - 4 6 8 0 ~ ~  + 1 8 9 8 0 ~ ~  - 2 4 7 8 6 ~ ~  + 1 1 0 9 1 ~  - 1600) 

a5 = a: + O(a:); 

K = 1 + K -  a? 

1536(2K- 1)'(3K- 1) (4K- 1) ( 5 K -  1) 

(2K2- 1 5 ~ +  16) 
8 ( 2 ~ -  1) 

(24~5+ 220K4- 2422K3+ 4 7 0 1 ~ ~ -  2858K + 704) 
a': + O(a9; + 128(2~-  1 ) , ( 3 ~ -  I)  

( 2tc2 + K + 8) 
c2= l + K -  8 ( 2 ~ -  1) a? 

(3.3e) 

Equations (3.3~-f) agree with Wilton's equations (lo)-( 15) respectively, with due 
regard paid to changes in notation. We note the presence of singularities a t  

K = 3, 4, ..., 
equivalent to wavelengths of 2.44, 2-99 cm for water. This phenomenon is due to the 
primary wave undergoing a resonant interaction with one of its harmonics. The case 
K = 3 will be considered in greater detail in a later paper. 

In theory we can carry on and find more coefficients (with the aid of a computer). 
However Schwartz showed for pure gravity waves that the coefficient a, is not a 
monotonically increasing function of the wave height. Instead he uses e = h where h, 
the wave amplitude, is defined as 

= *(Tcrest -Ttrough). 

Using (2.4b)) this can be written as 

or, using equation (3.1a), as 
00 

h = AkEzk-', 
k-1 

where 

(3.4) 

in order that e = h. We then use this form of e,  in case a, is not monotonic in h for all 
values of K .  Also h is a more practical parameter to use and the trouble of calculating 
the amplitude in terms of a,, at each step of the working, is removed. 
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In  order to obtain the solution to high order, we programmed equations (3.2) 
together with the closure equations (3.6) in FORTRAN IV on Cambridge University’s 
IBM 370/165 computer. The execution time for a quadruple precision (32 decimal 
places) solution up to O(hl00) was approximately 10 minutes and was independent of 
the input value of K (which must be chosen initially). More coefficients are difficult 
to obtain owing to storage problems associated with quadruple precision arithmetic. 
A double precision (16 decimal places) run produced more coefficients but serious 
rounding error was evident in the higher-order terms. This choice, of fewer (more 
accurate) coefficients, turns out to be vindicated because the expansions (3- 1) converge 
rapidly for particular values of K .  Consequently the higher-order terms are not as 
essential as may at first seem the case. 

Runs were made with K = 0, 0.000075, 0.0075, 0.8, 1.0, 5.0, 10.0. Other runs, with 
values of K nearer to 0.5, were also made but the analysis of these is to be included in a 
subsequent paper. The case K = 0.000075 (a wavelength in water of approximately 
200 cm) is not strictly suitable for inclusion as the effects of the air above could well 
have as comparable effect on the wave form as does surface tension. However it is 
instructive to compare it with the cases K = 0 and 0.0075. 

In  addition the following results were obtained, for general K ,  by hand: 

h3 + o(h5); 
3 ( 2 ~ ~ -  1 1 ~ + 8 )  

a, = h-  
1 6 ( 2 ~ -  1) ( 3 ~ -  1) 

a2 = 

a3 = 

a4 = 

h4 + O(h6); 
( 1 2 ~ 4  - 6 6 ~ ~  + 1 5 4 ~ ~  - 1 6 9 ~  + 40) 

(2K - 1) 8 ( 2 ~ -  l ) ’ (3~-  1) 

h3 + o(h5); 
9 1 2 ~ ~ -  1 1 ~ + 8 )  

1 6 ( 2 ~ - -  1) ( 3 ~ -  1) 

h4 + O(h6); 
( 1 8 ~ ~ - 1 8 3 ~ ~ + 3 6 1 ~ -  128) 
12(2K- 1) (3K-  1) (4K- 1) 

(3.7a) 

(3.7b) 

(3.7c) 

( 3 . 7 4  

h5+0(h7); (3.7e) 
2 5 ( 2 8 8 ~ 5 - 4 6 8 0 ~ ~ +  1 8 9 8 0 ~ ~ -  2 4 7 8 6 ~ ~ +  11091~-  1600) 

a5 = 

K =  l + K -  

1 5 3 6 ( 2 ~ - 1 ) ~ ( 3 ~ - 1 1 ) ( 4 ~ - 1 ) ( 5 ~ - 1 )  

h2 
( 2 ~ ~ -  1 5 ~ +  16) 

8 ( 2 ~ -  1) 

+ 1 2 8 ( 2 ~ -  1 ) 3 ( 3 ~ -  1) h4 + o(h6); (3.7f 1 
( 7 2 ~ 5 - 4 2 8 ~ 4 + 4 4 6 ~ 3 -  1 2 9 ~ ~ + 4 5 4 ~ -  64) 

h4 + o(q .  (3.7d 
( 7 2 ~ 5 - 4 2 8 ~ ~ -  1 9 4 ~ ~ + 7 3 5 ~ ~ -  74K+64) 

1 2 8 ( 2 ~ - 1 ) ~ ( 3 ~ - 1 )  + 
The computed results for a particular value of K agree exactly with those of equations 
(3.7), up to the orders given. In addition equations (3.7) can be shown to agree with 
Schwartz (1974) when K = 0 and Crapper (1957) when K is infinite. 
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( b )  Integral properties 

We can now draw wave profiles, using the a, (n = 1,2,  ...) and equations (2.4a,b). 
However we can do more with the computed coefficients. In  particular we can calculate 
phase speeds, kinetic and potential energies and mass, energy and momentum fluxes. 
For example the phase speed is given by equation (3.1 9) and we calculate the required 
coefficients Y ,  from equation ( 3 . 2 ~ ) .  To find the potential energy V ,  either we choose 
a, so that the mean level 7 vanishes or we can let a. = 0 and use equation (3.12a), 
below. We choose the latter. Other properties are found as follows. From equation 
(2.7) of I we have that 

C 
T = - J q ( d @ + c d x )  4T = *c27. (3.8) 

In  addition, letting y-+ - 00 in equation (2.3) of the present paper gives us 

Hence 

and 

7 = *(K-c2).  

T = &c2(K -c’) 

I = &(K - c2) 

(3.9) 

(3.10) 

(3.11) 

where, in (3.11), we have used the well-known result 2T = cI (see Longuet-Higgins 
(1975) for a proof in the case of pure gravity waves which can easily be extended to 
include gravity-capillary waves). With a non-zero mean level the potential energy V 
is given by 

V = &(+7j”++[(1+qf2)L 11 ( 3 . 1 2 ~ )  

= v,+v, (3.12 b )  

(compare this with equation (2.3) of I). We can now greatly simplify V ,  as follows: 

= u,. 

Note we have taken the positive root of (1 +qf2)4 so as to be consistent with I .  Then 
using (3 . le )  and the fact that T,, = 1 [from (3.2e) with k = 0 and (3.2c)l we have 

(3.13) 
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V,  is given in terms of aij by Cokelet (1977), equations (5.23) and (5.24). This enables us 
to write 

1 Q) j - 1  j - m - 1 3 - m - k - l j - m - k - i - 1  1 

8 j = 2 m - 1  k=O 4-0 
+-c  CI x c n=O z (-+ m j - k - i - n  

aj-m-k-i-n, k aj-k-i-n, n pi 
(j - m - k - i - n)  

Similarly using (3.1 g )  and (3.1 h) we have 

(3.15) 

For the radiation stress 8, and energy flux F we use equations (2.23) and (2.24) of 
I viz. 

S ,  = 4T-35-y,  (3.16) 

F = (3T - 2 5 )  C. (3.17) 

(=rapper (1979) has given an expression for S,,, the excess flux of z momentum in the 
z direction (where the z axis is such as to form a right-handed triad with the present 
(2, y) axes, that is, it is directed a t  right anglesinto the page). It is 

S,= T-K-F. 
The following expressions were then obtained: 

(3.18) 

(3.19) 

(3.20) 

h4+O(h6); (3.21) 
( - 8 4 ~ ~ + 1 7 2 K 3 - 1 9 3 ~ ~ + 1 7 5 ~ - 2 4 )  

64(2~-  1) ' (3~-  1) 8,. = $( 1 + 3K) h2 + 
- (2K2 + + 8, h4 + O(h6); 

Szz = 64(2~-  1) 

F / c  = $( 1 + 3 ~ )  h2 + h4 + O(h6). 
( - 18K4 + 42K3 - 37K2 -I- 34K - 4) 

16 (2~-  1) ' (3~-  1) 

(3.22) 

(3.23) 

Equations (3.19) and (3.20) agree with deep-water linear theory, as do (3.21), (3.22) 
[see Longuet-Higgins & Stewart (1964), 5 3, equations (6) and (23), respectively] and 
(3.23) [see Wehausen & Laitone (1960), equation (15.25)]. These results also agree with 
the known results for the limiting cases K = 0 and K intinite. Three other features of 
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these equations are noted also. Firstly, the singularities at  K = 4, Q, . . . are still present. 
Secondly, T - V ( = S,,) is positive if K < 4, and negative if K > 4 and we shall see 
that V > T is characteristic of all capillary waves with K > 4 (we already know this 
when K is infinite, see I ,  figure 2). Finally the order h4 term in T vanishes a t  K = 0 and 
at K = 1, the other two roots being complex. 

To conclude this section we note that when the expansion parameter was chosen 
to be t,he same as the one used by Cokelet (1977), namely 

where qcrest, qtrough denote the particle speeds at the wave crest and wave trough 
respectively, several of the coefficient,s aii, pii, etc. are (for all h)  complex-valued for 
K > 8. Of course this parameter is not necessarily applicable here. Its main merit, for 
pure gravity waves, is that it  has a known range, viz. 0 < ec < 1. This is because 
qcrest was postulated, by Stokes, to have the value zero at the highest wave (in a 
reference frame moving with the wave crests). However on including surface tension, 
a sharp crest must be ruled out, on intuitive grounds at  least. It can also be 
ruled out by using methods similar to those in $ 4  of Schwartz (1974) to show that 
qcrest can never vanish. So, even if the aij etc. were not complex-valued we still would 
not, know the range of E,  a priori. 

4. Results 
Now we present wave profiles and integral properties of waves for various values of 

K .  It is to be noted that taking 7 = 0 (in the dimensional form of K )  is equivalent to 
taking h infinite. In that sense, pure gravity waves will be included in the section on 
gravity waves together with K = 0.000075 and K = 0.0075. In  the same sense pure 
capillary wares (g  = 0) will be included under capillary waves, along with K = 0.8, 1.0, 
5.0 and 10.0. The main results are plotted in figures 1-21 and tabulated (where appro- 
priate) in the appendix. All the graphs were drawn with [13/13] Pad6 approximants 
and the tables contain these values, except for values of h near the highest, where the 
converged results are used. The values given are correct to the number of figures shown. 

(a )  Gravity waves 
Work on pure gravity waves was verified. In  particular tables 1 and 2 of Schwartz 
(1974), table 2 of Longuet-Higgins (1975), figures 19 and 20 and table A0 of Cokelet 
(1977) were all reproduced. Minor differences were encountered at heights very near 
to the maximum, owing to the fewer number of terms being used. 

In  the cases K = 0.000075 and K = 0.0075 we have now to consider what we shall 
call the highest wave. We have already excluded as a possibility the case of a sharp 
corner in the profile and, for these gravity waves, a criterion based on an enclosed 
bubble of air is obviously inapplicable. Another possible criterion, namely that the 
horizontal particle velocity (in the frame moving with the waves) should vanish 
somewhere in the profile implies that some part of the wave profile must be vertical 
and we shall see that this cannot be attained by our method. In  our case we adopt the 
following criterion. Having solved (3.2) with (3.6) for the aij, we can then calculate 
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FIGURE 1. Wave profiles, in the cage K = 0.000075, for h = 0.05, 0.10, 0.15, 0.20, 0.25, 
0.30, 0.35, 0.39, 0.41, 0.43. The still water line is included for reference. 

ai from (3.1 a ) ,  -.vith the aid of Pad6 approximants. Then if we do not get convergence 
in the Pad6 approximants, we cannot draw the wave profile by using equations (2 .4) .  
It must be stressed that this limiting criterion is only technical; the author has not 
yet seen any physical significance in this choice. This method is also dependent on 
what we call convergent. However it seems obvious, for consistency, to choose that 
used by Cokelet. That is, for a given value of i, take, for each value of h, 

{“IN] ai - [ N  - 1 /N - 13 ai> 
hi C =  

Then let N = 1,2,  .. . until either C < 10-5 or we run out of coefficientsaij toapproxi- 
mate. If the former, we take [ N / N ] a ,  as our value for at and go on to consider ai+l; 
if the latter, we take 

In  applying this limiting criterion with the convergence condition, it was found 
that not all the ai diverged after a certain height was passed. Groups of ai persisted 
in converging as h increased, with others diverging. So the maximum height h,,, was 
taken as the highest value of h a t  which the first 60 Fourier coefficients converged. For 
K = 0.000075, h,,, = 0.4365 and for K = 0.0075, h,,, = 0.3545 by this method. So for 
h = h,,, + 0.0001, one or more of the ai (i = 1 , 2 ,  . . . ,60) diverged. 

Whether or not these are highest waves remains to be seen. However work in progress 
on values of the radius of curvature a t  points along the wave profile indicate that as h 
increases towards h,,,, the radius of curvature appears to approach a constant 
value dependent only on K .  More numerical accuracy is required to support this 
conclusion, but it now seems that the values of h,,, quoted here do have some 
relevance. 

Finally, in the case of the gravity waves considered here, it  is possible that for 
K = 0.0075 the Fourier coefficient ala3 can be unusually large (the same applies to 

as the largest usable coefficient. 
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FIG~RE 2. Wave profiles, in the case K = 0.0075, for h = 0~05,0~10,0~16,0~20, 
0.25, 0-30,0.3545. The still water line is included for reference. 

K = 0.000 075 and a13333) owing to the denominator containing small terms ( I  3 3 ~  - 1 and 
1 3 3 3 3 ~ -  1 respectively). However it can be shown (for K = 0.0075) that 01133,1 = lo7*, 
not too distant from the expected value of 1076. (It is not possible, with present com- 
puter facilities, to find a13333,1 for K = 0.000075.) This is very close to the Iargeat 
number that the computer can hold and is hence subject to serious rounding error. So 
the author tried out two other values of K which would provide manageable coefficients, 
and give trouble a t  aao. In  each case (K  = 199/16000 and 399/32000),  the results for 
truncation at a,2 and alOO were indistinguishable to 8 decimal places at  h,,, (+ 0.30) 
in each case. Hence it seems that exclusion of these near-singular coeficients has no 
noticeable effect on our results. 

I n  figure 1 we show wave profiles in the case K = 0.000075. Note (i) we do not 
draw the highest wave as the series in equations (2 .4)  do not converge well, as is the 
case for K = 0 and h = h,,, = 0.44313, (ii) the profile h = 0.43 is almost entirely 
within the profile h = 0.41, the former having a trough depth less than the latter and 
(iii) the profile h = 0.43 has extra steepening just short of the crest, with a maximum 
local slope of 32.6'. In figure 2 with K = 0.0075 we have been able to draw the highest 
wave. The crest height and trough depth increase monotonically with h and the 
maximum wave slope is 20.6'. We note that no part of the wave profiles in either figure 
is vertical. 

We now describe the behaviour of various integral properties of waves with 
K = 0.000075 and 0.0075 and compare them with pure gravity wave ( K  = 0). First we 
consider the phase speed c. In  figure 3 we have drawn (c2-c:)fc: against h/hm8,. c,, 
is the phase speed of a wave of zero amplitude, given by cg = 1 + K .  We note the presence 
of a maximum in each of the curves for K = 0 (as found by Longuet-Higgins 1975) 
and K = 0.000075. Also the maximum value attained by (c2 - cg)/cg for K = 0 is larger 
than the maximum for K = 0.000075, but the value at h = h,,, for K = 0 is lower than 
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FIGURE 3 FIGURE 4 

FIGURE 3. The relative increase in the squared phase speed c2 to that of infinitesimal wavus c:, 
plotted against h/h-, for K = 0,0.000075, 0.0075. 

FIGURE 4. The kinetic energy T plotted against h/hm, for K = 0, 0~000075,0~0075. The scaling 
is such that g = 1. 

the corresponding value for K = 0.000075. In  addition there is one point a t  which the 
curve for K = 0 intersects with the curve for K = 0.000075. 

I n  fact this sort of behaviour of these values of K is typical of most of the wave 
properties. In  figures 4 and 5 we plot the kinetic and potential energies of these waves 
against hlh,,,. From the tables we see that T is always greater than V .  In  figure 6 
we plot V,  against h/hmaX. The behaviour here is not typical but it is interesting to see 
how little of the potential energy is actually due to the stretching of the surface. In  
the case K = 0,  V ,  is identically zero. In  figures 7 and 8 we plot S,,, the excess flux of x 
momentum in the x direction, and Szz, the excess flux of z momentum in the z direc- 
tion, respectively, against hlh,,,. In  figure 8 there is a maximum of S,, in the case 
K = 0.000075 although this may not be obvious from the graph. Also, in figures 9 and 10 
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0.0 

V 

0.0: 

1 1  I I I I I I I I 1  

0 0.5 1 .o 
W~ max 

FIGURE 5. The potential energy V plotted against h/hmu for K = 0, 
0.000075, 0.0075. The scaling is such that g = 1. 

we plot the fluxes of mass I and energy F ,  again, versus h/h,,,. The mean level ?f and 
Bernoulli constant exhibit similar behaviour and are not shown. ?j and V were checked, 
as in Cokelet (1977), by integration along the wave profile from their definitions. The 
intermediate maxima were confirmed and the deviation at  most 2% (this occurred 
a t  h = hmax). 

Finally since the integral properties give us a hint as to its behaviour, we plotted 
a, against hlh,,,. For K = 0 we know the behaviour is non-monotonic (Schwartz 
1972) and now it comes as no surprise to find the same behaviour when K = 0.000075, 
see figure 11. In fact a, to a,, (for K = 0-000075) are non-monotonic in h (not 
shown). Note though that a, is monotonic in h when K = 0.0075 and this is reflected 
in the behaviour of its integral properties. Discussion of these results is delayed 
until § 5. 
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FIGURE 6. That part of the potential energy due to surface tension V, plotted against 
h/h,, for K = 0, 0.000075, 0.0075. The scaling is such that g = 1.  

( b )  Capillary waves 
These waves are much easier to analyse and the convergence of all quantities in this 
section is remarkable. This is partly to be expected when one remembers the exact 
solution to the problem in the case K = 03 as given by Crapper (1957). However our 
method cannot deal with this case owing to the finite amount of computer storage 
available. But using Crapper's results and the results given in $ 3  of I, we are able 
to  compare large values of K with the case K = 00. To do this requires a change in the 
scaling. Instead of g = 1, we take r = 1 so that (non-dimensional) K = l/g. Then the 
case g = 0 does correspond to the case K = co. 

Again we must answer the question: what is the highest wave? However this time 
the answer is much simpler. We have Crapper's criterion available, that is, the surface 
bends over and touches itself, enclosing a bubble of air. In fact we found this behaviour 
for K = 0.8, 1.0,5.0 and 10.0 and we obtained maximum heights by a simple technique, 
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0.00' 

S2: 

0.00: 

0.00: 
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0 0.5 1.0 0 0.5 ' I  .o 

l l / / l  11131 8h/11 max 

FIGURE 7 FIGURE 8 

FIQURE 7. The radiation stress S,, plotted against h/h,, for K = 0, 0*000075, 0.0075. The 
scaling is such that g = 1. 

FIGURE 8. The radiation stress, S,,, plotted against h/hm, for K = 0, 0.000075, 0.0075. The 
scaling is such that g = 1.  

based on the method of interval halving, used in finding roots of polynomials. This 
implies that wave profiles could be drawn for h > hmaX, but these profiles, of a very 
non-physical shape, can also be obtained from Crapper's solution. The values of h,, 
for various values of K are given in table 1, where h = 277. 

We have also drawn the highest wave profiles together (figure 12). The case K = 0.8 
is missing as it is very similar to the case K = 1.0. We note the dependence of trough 
depth and crest height on K and the ever-present bubble. In the case K = 1.0, we have 
drawn profiles with h less than h,,, as well as the highest; these are given in figure 13. 
Similar graphs can be drawn for K = 0.8, 5.0 and 10.0. Note that, as found in I for the 
case K = 00, the crest height above the mean level is not a monotonic function of wave 
amplitude. 
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I 

0.06 

0.04 

0.02 
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F 

0.0 
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FIGURE 9 

FIGURE 9. The wave momentum I plotted against hlh,,, for K = 0, 0.000075, 0.0075. The 
scaling is such that g = 1.  

FIGURE 10. The energy flux F plotted against h/h,,, for K = 0, 0.000075, 0.0075. The scaling 
is such that g = 1. 

The results for integral properties follow. In figure 14 we plot cz/cg against h. Note 
that c2/ci is a decreasing function of h for all values of K and that the values of cz/cg 
at h = h,,, decrease as K decreases. In figure 15 we plot T against hlh,,,. The curves 
for K = 1.0 and 0.8 possess maxima just short of h = h,,,. In  figure 16 we plot V 
against hlh,,,. Here the behaviour is monotonic with h, but this covers up the rather 
interesting behaviour o f 5  as given in figure 17. In each case of finite K there is a well- 
defined maximum far short of h = h,,,. Thus V ,  must rapidly increase beyond this 
maximum and this is  the case as the surface starts to bend to enclose a bubble of air. 
We note that V ,  for K = 1.0 appears greater for most of the range of hlh,,, than V, for 
K = 0.8. However the K = 0.8 curve represents a greater percentage of V ,  in V than 
the K = 1.0, 5.0 and 10.0 curves for all values of h/h,,. As found in I for K = 00, we 
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------I 

FIGURE 11 .  The leading Fourier coefficient of the wave profile, a,, 
plotted against h/h,, for K = 0, 0.000075, 0.0075. 

K 

0 
0.000 075 
0.007 5 
0.8 
1.0 
5.0 

10.0 
03 

h,X 
0.443 1 
0.436 5 
0.354 5 
0.724 3 
0.806 9 
1.484 6 
1.746 8 
2.292 6 

TABLE 1.  Highest waves for various values of K.  
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FIGURE 12. Highest wave profiles for K = 1,5, 10, Q) 

drawn relative to the same mean level. 

0.3 0.3 

0 0 

- 1.0 - 1.0 

- 1.5 - 1.5 
0 n 2 r  

FIUURE 13. Wave profiles in the case K = 1.0 for h = 0.1, 0.3, 0.6, 0.7, 
0.8069. The still water line is included for reference. 

I I I I I I I I I I I I I I I I I I 1 1 1 1  

0 1 .o 2.0 2.2926 
h 

FIGURE 14. The ratio of the squared phase speed c2 to that of infinitesimal 
waves ci plotted ageinst h for K = 0.8, 1.0, 5.0, 10.0, a. 
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FIGURE 15 
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FIGURE 16 

FIQURE 15. The kinetic energy T plotted against h/h- for K = 0.8,1.0, 5.0, 10.0, co. The scaling 
is such that 7 = 1. 

FIGURE 16. The potential energy V plotted against h/h,, for K = 0.8, 1-0, 5.0, 10.0, 00. The 
scaling is such that T = 1. 

find here that V is always greater than T for given values of h and K .  In figure 18 we 
plot S,, against h/hmsx; non-monotonicity is absent. In  figure 19 we plot S,, against 
hlh,,,. It will be noted that S,, is always negative for non-zero h, indicating the flow of 
z momentum in the z direction for short waves is in the opposite direction to the case 
of long waves. In  figure 20 and 21 we plot the fluxes of mass I and energy F .  In the 
latter figure the curves K = 1.0 and 0.8 are non-monotonic. We note that the mean 
level and Bernoulli constant are monotonic in h. They are not shown. However table 2 
contains values of rcrest and ytrough for various values of K and h. 

Finally we state that a, is also a monotonic function of h for the quoted values of K .  

Hence we could have used it as an expansion parameter. In  fact the whole analysis 
was repeated in this manner for the case K = 1.0 and six-figure accuracy retained 

1 .o 
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K =  1.0 

I I I I I I I I I I 1  
0 0.5 1 4 

FIQURE 17 
hlhm, 

I 1  1 1  I 1  I I I l l  

0 0.5 1 .o 
hlhimnx 

FIGURE 18 

FIGURE 17. That part of the potential energy due to gravity V, plotted against h/h- for K = 0.8, 
1.0, 5.0, 10.0, m. The scalhg is such that 7 = 1. 

FIGURE 18. The radiation stress S,, plotted against h/h,, for K = 0.8, 1.0, 5.0, 10.0, 00. The 
scaling is such that 7 = 1. 

throughout, thus giving a check on the method. However when the mean level and 
potential energies were checked by the method of Cokelet (1977), severe disagreement 
was found in the case of the higher waves, for all values of K .  This was owing to the 
presence, in these waves, of two vertical tangents which the computer fails to 
represent accurately when integrating along the profile. Thus using a, as an expansion 
parameter was necessary if ?j and V were to be checked. The worst agreement was 
0.001 yo. 
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FIGURE 19 FIGURE 20 

FIQURE 19. The radiation stress S,, plotted against h/h,,, for K = 0-8, 1.0, 5.0, 10.0, CQ. The 
scaling is such that T = 1. 

FIQURE 20. The wave momentum 1 plotted against h/h- for K = 0.8, 1.0, 5.0, 10.0, Q). The 
scaling is such that T = 1. 

5. Discussion 
We have shown that gravity waves have non-monotonic integral properties even 

when there is a small amount of surface tension present. However, as we move to 
shorter waves, where surface tension dominates, the waves look and behave very 
much like pure capillary waves. 

This work has implications for experimenters who seek non-monotonicity in 
gravity waves. For it now seems that they must deal with waves of substantial wave- 
lengths if any progress is to be made. The author feels that if a wave of length less 
than 200cm is looked at, the non-monotonic behaviour will be very hard t o  detect, 
as the maximum moves nearer to the line h = hmw. However, experimental work on 
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2.0 

F 

0 
1 1  I I I I I I I I J  

0 0.5 I .o 
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FICWRE 21. The energy flux P plotted against h/h,, for K = 0.8, 
1.0, 5.0, 10.0, co. The scaling is such that T = 1. 

capillary waves could produce the characteristic pure-capillary wave form because it 
now appears that waves of length 2 cm will have this form also. In  practice viscosity 
will dampen the waves but not as fast as would be the case for waves of even shorter 
lengths . 

In  the case K = 0-000075 it should be possible to find instabilities in the manner of 
Longuet-Higgins (1978a, b ) .  There, for pure gravity waves, evidence (both physical 
and numerical) was given as to the possibility of the maximum in the phase speed being 
responsible for the onset of an instability (it may also be instructive to apply the same 
methods to the case K = 0-0075 where no phase speed maximum is present). The work 
of Longuet-Higgins & Fox (1977, 1978) may also be adapted to see if the phase speed 
possesses any other extrema but there the difficulty will arise in defining accurately 
the highest wave. In  addition this work can be extended to water of arbitrary uniform 
depth. Few wave profiles have been drawn by other authors for K not equal to  zero 
or infinity. Only Wilton’s work is relevant and his profiles have been compared to 
Crapper’s (see Wehausen & Laitone, 1960, p. 749). But as we pointed out at the end 
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of 9 4, because a, is monotonic in h, it  is possible to extend Wilton’s analysis to higher 
waves with the aid of Pad6 approximants. 

Finally, we point out that an approach to the problem, based on r] = P(x)  where F 
contains sines, cosines and their integral powers, will almost surely fail because as, we 
have shown, r] is not always a single valued function of x. 

In  a subsequent paper the case of waves near to and a t  K = 4 will be analysed in 
detail. Consideration of the question of parasitic capillary waves is also delayed, 
possibly for inclusion in work where the full time-dependence of the problem is analysed. 

While the final draft of this paper was being written, the author received preprints 
of papers by L. W. Schwartz & J.-M. Vanden-Broeck and B. Chen & P. G .  Saffman. 
Both pairs of authors concentrate on the shorter waves, with the latter pair showing 
that bifurcations of the solution can exist. However neither paper gives details of 
integral properties, other than phase speeds. 

Full details of the algorithm used to solve equations (3.2) are contained in the 
author’s Ph.D. thesis (Hogan 19793). 

I would like to thank Professor M. S. Longuet-Higgins for suggesting this problem 
to me and the Natural Environment Research Council for financial support. 
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